具有波束成型的天线阵列在较高的载波频率下克服了高空间路径损耗。但是,必须正确对齐光束,以确保用户设备(UE)辐射(并接收)最高功率。尽管有一些方法可以通过某种形式的层次搜索来详尽地搜索最佳光束,但它们可能很容易返回具有小型梁增益的本地最佳解决方案。其他方法通过利用上下文信息(例如UE的位置或来自相邻基站(BS)的信息的位置)来解决此问题,但是计算和传达此附加信息的负担可能很高。迄今为止,基于机器学习的方法受到随附的培训,性能监控和部署复杂性的影响,从而阻碍了其规模的应用。本文提出了一种解决初始光束发现问题的新方法。它是可扩展的,易于调整和实施。我们的算法基于一个推荐系统,该系统基于培训数据集将组(即UES)和偏好(即来自代码簿中的光束)关联。每当需要提供新的UE时,我们的算法都会返回此用户群集中的最佳光束。我们的仿真结果证明了我们方法的效率和鲁棒性,不仅在单个BS设置中,而且在需要几个BS之间协调的设置中。我们的方法在给定任务中始终优于标准基线算法。
translated by 谷歌翻译
视觉惯性定位是计算机视觉和机器人技术应用中的关键问题,例如虚拟现实,自动驾驶汽车和航空车。目的是在已知环境或动力学时估计物体的准确姿势。最近的方法使用卷积和时空网络直接回归姿势。绝对姿势回归(APR)技术可预测已知场景中图像输入的绝对摄像头姿势。进程方法执行相对姿势回归(RPR),该方法可预测已知对象动态(视觉或惯性输入)的相对姿势。可以通过检索跨模式设置的两个数据源的信息来改进本地化任务,这是一个挑战性的问题,这是由于矛盾的任务。在这项工作中,我们进行了基准,以评估基于PGO和注意力网络的深层多模式融合。辅助和贝叶斯学习已整合到APR任务中。我们展示了RPR AD的APR任务的准确性改进以及用于航空车辆和手持设备的RPR-RPR任务。我们在Euroc Mav和Penncosyvio数据集上进行实验,并记录一个新颖的行业数据集。
translated by 谷歌翻译
人类使用未知的相似性函数在未标记的数据集中天生测量实例之间的距离。距离指标只能作为相似实例信息检索相似性的代理。从人类注释中学习良好的相似性功能可以提高检索的质量。这项工作使用深度度量学习来从很少的大型足球轨迹数据集中学习这些用户定义的相似性功能。我们将基于熵的活跃学习方法从三重矿山开采进行了最新的工作,以收集易于招募的人,但仍来自人类参与者提供信息的注释,并利用它们来训练深度卷积网络,以概括为看不见的样本。我们的用户研究表明,与以前依赖暹罗网络的深度度量学习方法相比,我们的方法提高了信息检索的质量。具体而言,我们通过分析参与者的响应效率来阐明被动抽样启发式方法和主动学习者的优势和缺点。为此,我们收集准确性,算法时间的复杂性,参与者的疲劳和时间响应,定性自我评估和陈述以及混合膨胀注释者的影响及其对模型性能和转移学习的一致性。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
对于许多应用,分析机器学习模型的不确定性是必不可少的。尽管不确定性量化(UQ)技术的研究对于计算机视觉应用非常先进,但对时空数据的UQ方法的研究较少。在本文中,我们专注于在线手写识别的模型,这是一种特定类型的时空数据。数据是从传感器增强的笔中观察到的,其目标是对书面字符进行分类。我们基于两种突出的贝叶斯推理,平均高斯(赃物)和深层合奏的突出技术对核心(数据)和认知(模型)UQ进行了广泛的评估。在对模型的更好理解后,UQ技术可以在组合右手和左撇子作家(一个代表性不足的组)时检测分布数据和域的变化。
translated by 谷歌翻译
当机器学习模型将其应用于与最初训练的数据相似但不同的域中的数据时,它的性能会降低。为了减轻此域移位问题,域Adaptation(DA)技术搜索了最佳转换,该转换将(当前)输入数据从源域转换为目标域,以学习域名不变的表示,以减少域差异。本文根据两个步骤提出了一个新颖的监督DA。首先,我们从几个样本中搜索从源到目标域的最佳类依赖性转换。我们考虑了最佳的运输方法,例如地球搬运工的距离,凹痕传输和相关对准。其次,我们使用嵌入相似技术在推理时选择相应的转换。我们使用相关指标和高阶矩匹配技术。我们对具有域移动的时间序列数据集进行了广泛的评估,包括模拟和各种在线手写数据集,以演示性能。
translated by 谷歌翻译
自主驾驶有可能彻底改变流动性,因此是一个积极的研究领域。实际上,自动驾驶汽车的行为必须是可以接受的,即高效,安全和可解释的。尽管香草钢筋学习(RL)找到了表现的行为策略,但它们通常是不安全且无法解释的。安全性是通过安全的RL方法引入的,但是它们仍然无法解释,因为学习的行为在没有分别进行建模的情况下共同优化了安全性和性能。可解释的机器学习很少应用于RL。本文提出了SAFEDQN,它允许在仍然有效的同时使自动驾驶汽车的行为安全可解释。 SAFEDQN在算法上透明的同时,在预期风险和效用的效用之间提供了可以理解的语义权衡。我们表明,SAFEDQN为各种场景找到了可解释且安全的驾驶政策,并展示了最先进的显着性技术如何帮助评估风险和实用性。
translated by 谷歌翻译
流动性和流量的许多方案都涉及多种不同的代理,需要合作以找到共同解决方案。行为计划的最新进展使用强化学习以寻找有效和绩效行为策略。但是,随着自动驾驶汽车和车辆对X通信变得越来越成熟,只有使用单身独立代理的解决方案在道路上留下了潜在的性能增长。多代理增强学习(MARL)是一个研究领域,旨在为彼此相互作用的多种代理找到最佳解决方案。这项工作旨在将该领域的概述介绍给研究人员的自主行动能力。我们首先解释Marl并介绍重要的概念。然后,我们讨论基于Marl算法的主要范式,并概述每个范式中最先进的方法和思想。在这种背景下,我们调查了MAL在自动移动性场景中的应用程序,并概述了现有的场景和实现。
translated by 谷歌翻译
目的。手写是日常生活中最常见的模式之一,由于它具有挑战性的应用,例如手写识别(HWR),作家识别和签名验证。与仅使用空间信息(即图像)的离线HWR相反,在线HWR(ONHWR)使用更丰富的时空信息(即轨迹数据或惯性数据)。尽管存在许多离线HWR数据集,但只有很少的数据可用于开发纸质上的ONHWR方法,因为它需要硬件集成的笔。方法。本文为实时序列到序列(SEQ2SEQ)学习和基于单个字符的识别提供了数据和基准模型。我们的数据由传感器增强的圆珠笔记录,从三轴加速度计,陀螺仪,磁力计和力传感器100 \,\ textit {hz}产生传感器数据流。我们建议各种数据集,包括与作者依赖和作者无关的任务的方程式和单词。我们的数据集允许在平板电脑上的经典ONHWR与传感器增强笔之间进行比较。我们使用经常性和时间卷积网络和变压器与连接派时间分类(CTC)损失(CTC)损失(CE)损失,为SEQ2SEQ和基于单个字符的HWR提供了评估基准。结果。我们的卷积网络与Bilstms相结合,优于基于变压器的架构,与基于序列的分类任务的启动时间相提并论,并且与28种最先进的技术相比,结果更好。时间序列扩展方法改善了基于序列的任务,我们表明CE变体可以改善单个分类任务。
translated by 谷歌翻译
在过去的十年中,深入的强化学习(RL)已经取得了长足的进步。同时,最先进的RL算法在培训时间融合方面需要大量的计算预算。最近的工作已经开始通过量子计算的角度来解决这个问题,这有望为几项传统上的艰巨任务做出理论上的速度。在这项工作中,我们研究了一类混合量子古典RL算法,我们共同称为变异量子Q-NETWORKS(VQ-DQN)。我们表明,VQ-DQN方法受到导致学习政策分歧的不稳定性的约束,研究了基于经典模拟的既定结果的重复性,并执行系统的实验以识别观察到的不稳定性的潜在解释。此外,与大多数现有的量子增强学习中现有工作相反,我们在实际量子处理单元(IBM量子设备)上执行RL算法,并研究模拟和物理量子系统之间因实施不足而进行的行为差异。我们的实验表明,与文献中相反的主张相反,与经典方法相比,即使在没有物理缺陷的情况下进行模拟,也不能最终决定是否已知量子方法,也可以提供优势。最后,我们提供了VQ-DQN作为可再现的测试床的强大,通用且经过充分测试的实现,以实现未来的实验。
translated by 谷歌翻译